Genomics Approaches For Improving Salinity Stress Tolerance in Crop Plants

نویسندگان

  • Ramsong Chantre Nongpiur
  • Sneh Lata Singla-Pareek
  • Ashwani Pareek
چکیده

Salinity is one of the major factors which reduces crop production worldwide. Plant responses to salinity are highly complex and involve a plethora of genes. Due to its multigenicity, it has been difficult to attain a complete understanding of how plants respond to salinity. Genomics has progressed tremendously over the past decade and has played a crucial role towards providing necessary knowledge for crop improvement. Through genomics, we have been able to identify and characterize the genes involved in salinity stress response, map out signaling pathways and ultimately utilize this information for improving the salinity tolerance of existing crops. The use of new tools, such as gene pyramiding, in genetic engineering and marker assisted breeding has tremendously enhanced our ability to generate stress tolerant crops. Genome editing technologies such as Zinc finger nucleases, TALENs and CRISPR/Cas9 also provide newer and faster avenues for plant biologists to generate precisely engineered crops.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salinity Stress in Rice : an Overview

Molecular and physiological traits imparting resistance/tolerance and susceptibility to a particular biotic and abiotic stress are important from crop production point of view. There are a number of biotic (viz., insect-pests and diseases) and abiotic stresses (viz., drought, water logging, salinity/alkalinity, low temperatures etc.), which affect crop, among abiotic stresses, high salinity str...

متن کامل

Understanding salinity responses and adopting ‘omics-based’ approaches to generate salinity tolerant cultivars of rice

Soil salinity is one of the main constraints affecting production of rice worldwide, by reducing growth, pollen viability as well as yield of the plant. Therefore, detailed understanding of the response of rice towards soil salinity at the physiological and molecular level is a prerequisite for its effective management. Various approaches have been adopted by molecular biologists or breeders to...

متن کامل

Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals

Abiotic stresses such as low water availability and high salinity are major causes of cereal crop yield losses and significantly impact on sustainability. Wheat and barley are two of the most important cereal crops (after maize and rice) and are grown in increasingly hostile environments with soil salinity and drought both expected to increase this century, reducing the availability of arable l...

متن کامل

Sulfate transporters in the plant’s response to drought and salinity: regulation and possible functions

Drought and salinity are two frequently combined abiotic stresses that affect plant growth, development, and crop productivity. Sulfate, and molecules derived from this anion such as glutathione, play important roles in the intrinsic responses of plants to such abiotic stresses. Therefore, understanding how plants facing environmental constraints re-equilibrate the flux of sulfate between and w...

متن کامل

Biotechnology of water and salinity stress tolerance.

Drought and salinity are among the environmental factors that constrain agricultural productivity most dramatically. Classical breeding programs aiming to improve stress tolerance have been hampered by the multigenic nature of the trait and the seemingly scarce natural genetic variability in crop plants. Novel genetic determinants governing the function of stomata and improving the performance ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016